World's First !!!

Histone Variant Monoclonal Antibodies

Anti Histone H3.1/H3.2 [Clone: 6G3C7] Anti Histone H3.1/H3.2 [Clone: 1D4F2]

Nucleosomes are composed of four different histone proteins designated H2A, H2B, H3, and H4. In humans, five variants of histone H3 are reported: H3.1, H3.2, H3.3, H3t, and CENP-A. The two major Histone H3 variants, H3.1 and H3.3, are the main variants displaying distinct genomic localization patterns in eukaryotes. Deposition of Histone H3.1 is associated with DNA synthesis during DNA replication and possibly DNA repair, while Histone H3.3 is incorporated independently of DNA synthesis and is the predominant form of H3 found in non-dividing cells. Hence, these new Histone H3 variant monoclonal antibodies Anti Histone H3.3 [Clone: 6C4A3] Anti Histone H3.3 [Clone: 1E4A3]

offer great utility for dissecting the functional significance of these H3 variants and the molecular mechanisms associated with their deposition.

Recently, it was shown that a genomic gene cluster regulating skeletal myogenesis is marked by H3.3 protein prior to cellular muscle formation and that H3.3 marking of this region enables myogenic gene activation (Ref. 2). These results suggest that monitoring H3.3 marking at specific loci may be useful in the prediction of cell fate. These H3.3 monoclonal antibodies are expected to be useful probes in the field of regenerative medicine.

These H3 variant antibodies were essential tools in a first of kind study showing that differentiation specific genes are marked for lineage specific expression by the deposition of Histone H3.3 at the onset of differentiation signaling (Ref. 2).

Reference 1) Hake and Allis, (2006) *PNAS*, **103**, 6428-6435. 2) Harada *et. al.*, (2012) *EMBO J.* **36**, 2994-3007.

Description	Clone	Isotype	Epitope	Application	Cat. No.	Quantity	
Anti Histone H3.1/H3.2	6G3C7	Rat-lgG1, λ	H3.1/H3.2 (79-94)	IP/ WB	CAC-CE-039A	100 µL (100 µg)	
Anti Histone H3.1/H3.2	1D4F2	Mouse-lgG2b, λ	H3.1/H3.2 (21-39)	ChIP/ IP/ WB/ IC	CAC-CE-039B	50 µL (50 µg)	
Anti Histone H3.3	6C4A3	Rat-IgG2a, к	H3.3 (79-97)	IP/ WB	CAC-CE-040A	100 μL (100 μg)	
Anti Histone H3.3	1E4A3	Rat-IgG2a, λ	H3.3 (21-39)	ChIP/ IP/ WB/ IC	CAC-CE-040B	50 µL (50 µg)	

ChIP. Immunostain. WB.

Monoclonal Antibodies to Histone Modifications

Histones are the main protein components of chromatin. To facilitate nuclear packaging and control of gene expression, DNA in chromatin is wound around nucleosome particles composed primarily of the Histones H2A, H2B, H3, and H4. Histone N-terminal regions (histone tails) protrude from the nucleosome core and are subject to a variety of reversible, regulated modifications (including acetlylation, phosphorylation, and methylation) influencing transcription and chromatin structure. How such modifications are regulated and how these modifications effect gene expression continues to be an area of intense interest and research. In such studies, chromatin immunoprecipitation (ChIP) is perhaps the most widely used experimental procedure. Due to the inherent variability and limited supply of polyclonal antibodies, well characterized monoclonal antibodies are preferred reagents for ChIP. The versitile set of anti-histone monoclonal antibodies offered here are therefore highly valuable reagents to your lab's epigenetic toolbox.

Description	Host	Residue	Modification	Clone	Application	Cat. No.	Quantity
Anti Histone H3	Mouse	-	unmodified	MABI0301	ChIP/ WB/ IC	MCA-MABI0001-100-EX	100 μL (100 μg)
Anti Monomethyl Histone H3 (Lys4)	Mouse	K4 (Lysine 4)	monomethyl	MABI0302	ChIP/ WB/ IC	MCA-MABI0002-100-EX	100 μL (100 μg)
Anti Dimethyl Histone H3 (Lys4)	Mouse		dimethyl	MABI0303	ChIP/ WB/ IC	MCA-MABI0003-100-EX	100 μL (100 μg)
Anti Trimethyl Histone H3 (Lys4)	Mouse		trimethyl	MABI0304	ChIP/ WB/ IC	MCA-MABI0004-100-EX	100 μL (100 μg)
Anti Histone H3 K9Ac New	Rat	K9 (Lysine 9)	acetyl	2G1F9	ChIP/ WB/ IC/ IHC	CAC-CE-037A	100 μL (100 μg)
Anti Acethyl Histone H3 (Lys9)	Mouse		acetyl	MABI0305	ChIP/ WB/ IC	MCA-MABI0005-100-EX	100 μL (100 μg)
Anti Monomethyl Histone H3 (Lys9)	Mouse		monomethyl	MABI0306	ChIP/ WB/ IC	MCA-MABI0006-100-EX	100 μL (100 μg)
Anti Dimethyl Histone H3 (Lys9)	Mouse		dimethyl	MABI0307	ChIP/ WB/ IC	MCA-MABI0007-100-EX	100 μL (100 μg)
Anti Trimethyl Histone H3 (Lys9)	Mouse		trimethyl	MABI0308	ChIP/ WB/ IC	MCA-MABI0008-100-EX	100 μL (100 μg)
Anti Acetyl Histone H3 (Lys9/27)	Mouse	K9/27 (Lysine 9/27)	acetyl	MABI0310	ChIP/ WB/ IC	MCA-MABI0010-100-EX	100 μL (100 μg)
Anti Acetyl Histone H3 (Lys27)	Mouse		acetyl	MABI0309	ChIP/ WB/ IC	MCA-MABI0009-100-EX	100 μL (100 μg)
Anti Monomethyl Histone H3 (Lys27)	Mouse	K27 (Lysine 27)	monomethyl	MABI0321	ChIP/ WB/ IC	MCA-MABI0321-100-EX	100 µL (100 µg)
Anti Dimethyl Histone H3 (Lys27) coming soon!	Mouse		dimethyl	MABI0322	ChIP/ WB/ IC	MCA-MABI0322-100-EX	100 µL (100 µg)
Anti Trimethyl Histone H3 (Lys27)	Mouse		trimethyl	MABI0323	ChIP/ WB/ IC	MCA-MABI0323-100-EX	100 μL (100 μg)
Anti Monomethyl Histone H3 (Lys36)	Mouse	K36 (Lysine 36)	monomethyl	MABI0331	ChIP/ WB/ IC	MCA-MABI0331-100-EX	100 µL (100 µg)
Anti Dimethyl Histone H3 (Lys36)	Mouse		dimethyl	MABI0332	ChIP/ WB/ IC	MCA-MABI0332-100-EX	100 μL (100 μg)
Anti Trimethyl Histone H3 (Lys36)	Mouse		trimethyl	MABI0333	ChIP/ WB/ IC	MCA-MABI0333-100-EX	100 µL (100 µg)
Anti Histone H3 S10ph New	Rat	S10	phospho	6G8B7	WB/ IC	CAC-CE-034A	100 μL (100 μg)
Anti phospho Histone H3 (Ser10)	Mouse (Serine 10)		phospho	MABI0312	ChIP/ WB/ IC	MCA-MABI0012-100-EX	100 μL (100 μg)
Anti Histone H3 T11ph New	Rat	T11 (Threonine 11)	phospho	6G12C5	WB/ IC	CAC-CE-035A	100 μL (100 μg)
Anti Histone H3 T32ph New	Rat	T32 (Threonine 32)	phospho	6C7G12	WB/ IC	CAC-CE-036A	100 μL (100 μg)
Anti phospho Histone H2B (Ser14)	Mouse	S14 (Serine 14)	phospho	MABI0251	ChIP/ WB/ IC	MCA-MABI0251-100-EX	100 μL (100 μg)

Reference

- 1) Strahl and Allis, (2000) Nature403, 41-45.
- 2) Shimada **et. al.**, (2008) **Cell 132**, 221–232.
- 3) Kimura H, et. al., (2008) Cell Struct Funct, 33, 61
- 4) Ohhata T, et. al., (2008) Development.135, 227

Luco RF, et. al., (2010) Science., 327, 996 (2010)
Rechtsteiner A, et. al., (2010) PLoS Genet., 6, e1001091
Furuhashi H, et. al., (2010) Epigenetics Chromatin.3, 15
Matsui T, et. al., (2010) Nature, 464, 927

For research use only. Not for diagnostic use.

www. boppard.cn info@boppard.cn 北京 Tel: 010 85804838 上海 Tel: 021 62884751 广州 Tel: 020 87326381 香港 Tel: 852 27999019

Соѕмо Віо Со., Ltd.

TOYO EKIMAE BLDG. 2-20, TOYO 2-CHOME, KOTO-KU. TOKYO 135-0016, JAPAN TEL: (81)3-5632-9617 FAX: (81)3-5632-9618 e-mail: export@cosmobio.co.jp URL: www.cosmobio.com